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Center for Additive Manufacturing Systems (CAMS)

Two leading universities, Georgia Tech & HUST, explore new knowledge 

and framework for AM to deliver high quality and industry relevant 

research.  Share computational tools, infrastructure, data, & network.

World Largest 3D Printer4D Printer, Ceramic Printer

New Design Software, New Materials Developed Commercial SLM printers
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Current Status of Additive Manufacturing
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Global Market Value

Market Size (2015): $5.9 billion

1) Industrial Applications (93%)

2) Consumer Market (7%)

(USA: 41%,   EU: 30%

Asia: 24%,  Other: 2%)

H. Blum, The future of 3D printing to 2025, 

(2015). 

http://www.smitherspira.com/news/2015/june/3

d-print-market-expected-to-reach-$49b-by-

2025. 
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AM Global Research Trends

 Top 4 countries (USA / China / Germany / UK) are 

leading this AM-related research area

South Korea (#7) 
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AM Global Research Trends

 Top 5 Technologies (SLM/FDM/SLA/SLS/EBM)

# of AM Publications
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AM Technologies

 Liquid Resin   Digital Light Printing (DLP & SLA)

 Metal/Ceramic Powder  Selective Laser Melting (SLM)

Electron Beam Melting (EBM) 

Selective laser Sintering (SLS)

 Filament (Solid)  Fused Deposition Modeling (FDM)

High Resolution, Fast Speed

Cheap, High Strength

Expensive, but possible to achieve born qualified parts
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Fused Deposition Modeling (FDM)

ABS/PLA/PET/etc. 
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Selective Laser Melting (SLM)

20~40 microns layer
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Electron Beam Melting (EBM)
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Digital Light Processing (DLP) 

Stereolithography (SLA)  UV Laser

Photoreactive Liquid 

Resin

DLP (Digital Projector)
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SLA vs DLP

SLA DLP
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SLA vs FDM
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3D Printers for Injection Molding

 DLP/SLA/Polyjet (Liquid Resin)

 SLM/EBM/SLS (Metal, Ceramic, Sand Powders) 

 Fused Deposition Modeling (FDM), Composite Filament

SLM : around 30 metal powders

$100,000 ~ $2M

EBM : 8~10 metal powders

$1,000 ~ $800,000 depending upon build 

size, resolution & materials

Al, Ti, SS, Inconel, etc.
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AM for Injection Molding
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Benefits from AM in Injection Molding Industry

Ideal for low volume service parts (small batch, 10~200)

 Can quickly verify new designs and produce small 

batches. 

 Verified mold can be used as a prototype to make a 

high-volume mold with traditional tooling methods. 

3D Printing

Injection Molding

Car Handle Product 

(up to 407 units, 3D 

printing is cheaper)

Ref:Sculpteo
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Benefits from AM in Injection Molding Industry

Complex internal geometry  Conformal cooling using 

lattice structures, micro-channels 

 Cooling cycle time improvement, 50%.

Improved temperature uniformity and reduced volumetric 

shrinkage 

 Useful to applications requiring repeatable tight tolerance. 

Conventional           3D Printed
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Benefits from AM in Injection Molding Industry

Optimized cooling channels  Complex geometry

Simulation 

shows that total 

cycle time can 

be reduced upto

15~60% 

depending upon 

part complexity
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Benefits from AM in Injection Molding Industry

“Lost Wax” casting with 3D printers (Print to Cast)

 DLP printers very high resolution wax printing 

capabilities (~40 micro meter)

Wax Filament for FDM printers

(can be polished, machined)
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Metal Mold (EBM/SLM)

3D Printed Mold Examples

Lego

 3D Printed metal inserts require machining for 

surface finish, but micro-cooling channels can be 

integrated. 
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3D Printed Mold Examples

Sand Mold (SLS)  

Formula 1 Transmission Housing:

Cast material: Al alloy 356 

Printed Material: Silica sand 

Printed Volume: 200 L

Production Time: 4 hours

Batch size: 5 pieces

Cost per part: 1500 euro

Traditional method: 15,000 euro
ExOne
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Thermosetting Plastic Mold (DLP)

3D Printed Mold Examples

Stratasys

Molding temperature up to 300 ºC

Materials: PE, PP, PS, ABS, TPE, TPO,

PA, POM, PC-ABS and glass-filled resins

Print size: ~10x13 inch

200 ton molding machine

 Produce 20~200 parts
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3D Printed Castable Materials (DLP)

Dental Application

EnvisionTec

Jewelry 

3D Printed Mold Examples
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3D Printing

Prototyping/Short Runs

Low Production Volume

Large Production Volume

3D Printing vs Conventional Manufacturing Methods

Conventional (Casting, Forming, 

Machining, Stamping, etc. )

Complex Geometry

(Part Consolidation)
Very Large Parts

High Material Costs

(but reduced waste)

Low Material Costs

Non-critical Parts

(speed to market)

Mission Critical Parts

(surface, standards)

VS
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Current Technical Challenges in AM

Printer can create virtually any geometry but software tools 

are lagging behind

What you design and what you get are not always the same

 There are issues in data management and data translation 

between CAD packages and tool path codes used by printing 

machines. There are no universal standards.  

 Mismatch between design and build

 Universal market standard for data transfer/translation required 

 Require improved software tools which are capable of handling the 

geometric complexities of designed components.

 Require design tools and methodologies which aid with the design 

for AM process to unlock the true potential of the technology.
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Current Technical Challenges in AM

Build quality and repeatability are still a question mark

 Not good enough to meet strict safety standards (i.e., aerospace)

3D printers are getting faster but the manual pre- and post-

processing is lagging

 Heat treatment, support removal, part removal from base plate, 

cleaning, powder sieving and many others can be a significant 

logistical and financial burden. 

FDM SLM
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Design Approaches and Tools in AM
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Value of Cellular/Lattice Structures

Ashby Chart

• Gap in low density and high strength 

region  Cellular/Lattice structure 

• Light Weight & High Strength, 

High Energy Absorption can be

accomplished via cellular structures 
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Design Methods for Lattice Structures  

Relative Density Mapping (RDM) method @ 

Georgia Tech

Relative Density 

Mapping (RDM)
Topology 

optimization
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Design Methods for 3D Printed Injection Molding  

Functionally Graded Lattice (FGL) Design Method @ GT

Density Distribution FGL Generation

Non-optimal Design
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Design Methods for 3D Printed Injection Molding  

Existing Injection Mold Example

Optimal Lattice 

Design

Mechanical compliance is minimized along with mechanical & thermal loads. 

 Thermal compliance minimization and heat convection 

are not considered in the previous research. 

Integrate Cooling Channel

Ref: Purdue
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Design Methods for 3D Printed Injection Molding  

Design Process @ GT
Loading/Boundary Conditions

Symmetry region 

Heat convection

Heat flux

Injection pressure

Clamping pressure

Design internal lattice structures 

to increase thermal & mechanical 

performances using FGL
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Design Methods for 3D Printed Injection Molding  

Multi-objective Topology Optimization Method with FGL @ GT

Fm: Mechanical Load, Um Mechanical Displacement

Ft: Thermal Expansion Load, Ut, Thermal Expansion Displacement

q: Nodal Heat Flux,  T: Nodal Temperature

Density distribution Nodal distribution
Functionally graded 

lattice generation

Topology Optimization Statement
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Summary 

 AM-fabricated inserts for injection molding can reduce costs and 

timeframes drastically.  Shorter time to market. 

 Conformal cooling with lattice structures can improve cooling cycle 

time as much as 50% above compared to traditional conformal 

cooling. Useful to applications requiring repeatable tight tolerances.

 AM is less competitive than traditional manufacturing in terms of 

mass production, surface finish, and large size products. 

 New AM technologies keep introduce new materials and surface 

finishing capabilities. 

AM can not replace the traditional manufacturing, but it can 

complement it. 
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Q&A


