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Two leading universities, Georgia Tech & HUST, explore new knowledge
and framework for AM to deliver high quality and industry relevant
research. = Share computational tools, infrastructure, data, & network.

Center for Additive Manufacturing Systems

Huazhong University of Science and Technology
& Georgia Institute of Technology
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4D Printer, Ceramic Printer

World Largest 3D Printer
New Design Software, New Materials

Developed Commercial SLM printers 2



« Current Status of Additive Manufacturing (AM)

* AM for Injection Molding

* Current Technical Challenges
* Design Approaches and Tools
* On-going Work

 Summary
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Current Status of Additive Manufacturing
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Global market value ($ million)

1) Industrial Applications (93%)
2) Consumer Market (7%)
(USA: 41%, EU: 30%
Asia: 24%, Other: 2%)

H. Blum, The future of 3D printing to 2025,
(2015).
http://mww.smitherspira.com/news/2015/june/3
d-print-market-expected-to-reach-$49b-by-
2025. 5



* Top 4 countries (USA / China / Germany / UK) are
leading this AM-related research area
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* Top 5 Technologies (SLM/FDM/SLA/SLS/EBM)
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» Filament (Solid) = Fused Deposition Modeling (FDM)

Cheap, High Strength

» Metal/Ceramic Powder =» Selective Laser Melting (SLM)
Electron Beam Melting (EBM)
Selective laser Sintering (SLS)

Expensive, but possible to achieve born qualified parts
= Liquid Resin =» Digital Light Printing (DLP & SLA)

High Resolution, Fast Speed
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Fused Deposition Modeling (FDM)

ABS/PLA/PET/etc.
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Selective Laser Melting (SLM)

20~40 microns layer
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Electron Beam Melting




Liquid photocurable
resin

Photoreactive Liquid
Resin

Fabrication platform

Digital Mirror Device
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SLA vs FDM




* Fused Deposition Modeling (FDM), Composite Filament

= SLM/EBM/SLS (Metal, Ceramic, Sand Powders)

| Al, Ti, SS, Inconel, etc.
SLM : around 30 metal powders
EBM : 8~10 metal powders

$100,000 ~ $2M

* DLP/SLA/Polyjet (Liquid Resin)

$1,000 ~ $800,000 depending upon build
size, resolution & materials
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AM for Injection Molding



= Can quickly verify new designs and produce small

batches.
=» Verified mold can be used as a prototype to make a
high-volume mold with traditional tooling methods.
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Injection Molding
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=>» Cooling cycle time improvement, 50%.

= Improved temperature uniformity and reduced volumetric
shrinkage

=> Useful to applications requiring repeatable tight tolerance.
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Optimized cooling channels = Complex geometry

Simulation
shows that

can
be

depending upon
part complexity
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= DLP printers very high resolution wax printing
capabilities (~40 micro meter)

Wax Filament for FDM printers
(can be polished, machined)
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=» 3D Printed metal inserts require machining for
surface finish, but micro-cooling channels can be
Integrated.




Formula 1 Transmission Housing:
Cast material: Al alloy 356
Printed Material: Silica sand
Printed Volume: 200 L

Production Time: 4 hours

Batch size: 5 pieces

Cost per part: 1500 euro

Traditional method: 15,000 euro
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=» Produce 20~200 parts

Molding temperature up to 300 °C Jr a

Materials: PE, PP, PS, ABS, TPE, TPO,
PA, POM, PC-ABS and glass-filled resins

Print size: ~10x13 inch
200 ton molding machine
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Dental Application

Jewelry

EnvisionTec
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(Casting, Forming,
Machining, Stamping, etc.)

Prototyping/Short Runs Large Production Volume
Low Production Volume

Complex Geometry Very Large Parts
(Part Consolidation)

VS
High Material Costs Low Material Costs
(but reduced waste)
Non-critical Parts Mission Critical Parts
(speed to market) (surface, standards)
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Printer can create virtually any geometry but software tools
are lagging behind

* Require improved software tools which are capable of handling the
geometric complexities of designed components.

* Require which aid with the design
for AM process to unlock the true potential of the technology.

What you design and what you get are not always the same

= There are issues in data management and data translation
between CAD packages and tool path codes used by printing
machines. There are no universal standards.

= Mismatch between design and build

=» Universal market standard for data transfer/translation required
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Build quality and repeatability are still a question mark

* Not good enough to meet strict safety standards (i.e., aerospace)

RO A

3D printers are getting faster but the manual pre- and post-
processing is lagging

* Heat treatment, support removal, part removal from base plate,

cleaning, powder sieving and many others can be a significant
logistical and financial burden.
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Design Approaches and Tools in AM
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Strut j

Relative Density

Topology Mapping (RDM)

optimization
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Density Distribution

Strut j
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Non-optimal Design
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.

Ref: Purdue

Optimal Lattice
Design

Integrate Cooling Channel

Mechanical compliance is minimized along with mechanical & thermal loads.
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Loading/Boundary Conditions

Injection pressure

Symmetry region l l l l l
Heat flux

Iy

Heat convection

Ly

Design internal lattice structures
to increase thermal & mechanical T T T T
performances using FGL

Clamping pressure
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Density distribution Nodal distribution Functionally graded
lattice generation

Topology Optimization Statement
min f (p) = wy (FpUp(p) + F U (p)) + w,qT(p)

Fm: Mechanical Load, Um Mechanical Displacement
Ft: Thermal Expansion Load, Ut, Thermal Expansion Displacement
g: Nodal Heat Flux, T: Nodal Temperature
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= AM-fabricated inserts for injection molding can reduce costs and
timeframes drastically. = Shorter time to market.

= Conformal cooling with lattice structures can improve cooling cycle
time as much as 50% above compared to traditional conformal
cooling. =»Useful to applications requiring repeatable tight tolerances.

= AM is less competitive than traditional manufacturing in terms of
mass production, surface finish, and large size products.

= New AM technologies keep introduce new materials and surface
finishing capabillities.

@Georgia S JE= 35

Tech



Q&A



